Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(21): 11611-11621, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192367

RESUMO

Nucleosides are essential cornerstones of life, and nucleoside derivatives and synthetic analogues have important biomedical applications. Correspondingly, production of non-canonical nucleoside derivatives in animal model systems is of particular interest. Here, we report the discovery of diverse glucose-based nucleosides in Caenorhabditis elegans and related nematodes. Using a mass spectrometric screen based on all-ion fragmentation in combination with total synthesis, we show that C. elegans selectively glucosylates a series of modified purines but not the canonical purine and pyrimidine bases. Analogous to ribonucleosides, the resulting gluconucleosides exist as phosphorylated and non-phosphorylated forms. The phosphorylated gluconucleosides can be additionally decorated with diverse acyl moieties from amino acid catabolism. Syntheses of representative variants, facilitated by a novel 2'-O- to 3'-O-dibenzyl phosphoryl transesterification reaction, demonstrated selective incorporation of different nucleobases and acyl moieties. Using stable-isotope labeling, we further show that gluconucleosides incorporate modified nucleobases derived from RNA and possibly DNA breakdown, revealing extensive recycling of oligonucleotide catabolites. Gluconucleosides are conserved in other nematodes, and biosynthesis of specific subsets is increased in germline mutants and during aging. Bioassays indicate that gluconucleosides may function in stress response pathways.


Assuntos
Nucleosídeos , Ribonucleosídeos , Animais , Caenorhabditis elegans , Oligonucleotídeos
2.
Chembiochem ; 22(21): 3037-3041, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34018291

RESUMO

The major capsid protein VP1 of JC Polyomavirus assembles into pentamers that serve as a model for studying viral entry of this potentially severe human pathogen. Previously, labeling of viral proteins utilized large fusion proteins or non-specific amine- or cysteine-functionalization with fluorescent dyes. Imaging of these sterically hindered fusion proteins or heterogeneously labeled virions limits reproducibility and could prevent the detection of subtle trafficking phenomena. Here we advance the π-clamp-mediated cysteine conjugation for site-selective fluorescent labeling of VP1-pentamers. We demonstrate a one-step synthesis of a probe consisting of a bio-orthogonal click chemistry handle bridged to a perfluoro-biphenyl π-clamp reactive electrophile by a polyethylene glycol linker. We expand the scope of the π-clamp conjugation by demonstrating selective labeling of an internal, surface exposed loop in VP1. Thus, the π-clamp conjugation offers a general method to selectively bioconjugate tags-of-interest to viral proteins without impeding their ability to bind and enter cells.


Assuntos
Proteínas do Capsídeo/metabolismo , Cisteína/metabolismo , Vírus JC/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas do Capsídeo/química , Cisteína/química , Vírus JC/química , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...